Episode 3. Principles in Network Design

Part 2

Baochun LI

Department of Electrical and Computer Engineering
University of Toronto

Designing a real system is a creative
process, and like anything else creative, there
are some ideas that help getting good designs

Recall: Designing the network as a system

Every complex computer system involves one or more
communication links, usually organized to form a network

|dentified challenging properties of a network
The layering principle: the three-layer reference design

The end-to-end argument (which we just covered):
applications know the best!

But there are more of these principles
(techniques) In design

Reading: Keshav 6.1 — 6.5

What is system design?

A computer network provides computation, storage and transmission
resources

System design is the art and science of putting together these
resources into a harmonious whole

Ultimately, you wish to extract the most from what you have

Where do we start from?

%r@e (ules of work:
Oqu of clutter LGind éimpltc.itcj.

WOW\ discord ind harmong,

e e o -
Simplicity 1 the iddle of difBieutty lies

_—

Simphieity? |t can be an overarching
philosophy, but it Is too high level.

Performance metrics and resource constraints

In any system, some resources are more freely available than others
Think about a high-end laptop connected to Internet by a DSL modem
The constrained resource is link bandwidth
CPU and memory are unconstrained

We wish to maximize a set of performance metrics given a set of resource
constraints

Explicitly identifying constraints and metrics helps in designing efficient systems

Maximize reliability (mean time between failures) for a car that costs less than
$10,000 to manufacture

10

Real-world system design should be

Scalable, modular, extensible, and elegant
Future-proof
Rapid technological change

Market conditions may dictate changes to design
halfway through the process

International standards, which themselves change
slowly, also iImpose constraints

11

Most resources are a combination of
time, space, computation, money, labor,
and scaling

Let's think about a few of these In turn

Time

Shows up in many constraints

deadline for task completion, time to market, mean time between failures
Metrics
response time: mean time to complete a task

throughput: number of tasks completed per unit time

degree of parallelism =response time X throughput

20 tasks completed in 10 seconds, and each task takes 3 seconds

— degree of parallelism=3X20/10=6

14

Space

Example: a limit on the memory available for a buffer to hold packets
INn switches and routers

We can also view bandwidth as a space constraint

A T3 link has a bandwidth of 44.7/768 Mbps. If we use it to carry
video streams with a mean bit rate of 1.5 Mbps, we can fit at most
29 streams in this link.

15

Scaling

A design constraint, rather than a resource constraint
Minimizes the use of centralized elements in the design

Yet, forces the use of complicated distributed algorithms
Hard to measure

but necessary for success

16

Think about resource bottlenecks

Bottlenecks are the most constrained elements in a system

System performance improves by removing the bottlenecks
But inevitably creates new bottlenecks

In a balanced system, all resources are simultaneously bottlenecked
This is optimal, but nearly impossible to achieve
In practice, bottlenecks move from one part of the system to another

Historical example: Ford Model T

17

Time for design ideas!

ldea #1: Multiplexing and virtualization

Multiplexing

Another word for sharing
Trades time and space for money

Users see an increased response time, and take up space
when waiting, but the system costs less

economies of scale make a single large resource cheaper

20

Multiplexing
Examples
Multiplexed communication links
Servers in cloud computing
Another way to look at a shared resource
Unshared virtual resource — the telephone network with time-division multiplexing
Server controls access to the shared resource
uses a schedule to resolve contention

choice of scheduling: critical in proving quality of service guarantees — think about
boarding a flight

21

Statistical multiplexing

Suppose resource has capacity C
Shared by N identical tasks

Each task requires capacity ¢
If N - ¢ < C, then the resource is underloaded

If at most 10% of tasks active,then C > N - ¢ /10 is enough

We used statistical knowledge of users to reduce system cost

This is the statistical multiplexing gain

22

Two types of statistical multiplexing

Spatial

we expect only a fraction of tasks to be simultaneously active

Temporal

we expect a task to be active only part of the time — its average
resource consumption is less than its peak

e.g. silence periods during a voice call; video streams with variable
bit rates

23

ldea #2: Batching

Batching: trading response time for throughput

Group tasks together to amortize overhead

Only works when overhead for N tasks < N time overhead for one
task

Also, time taken to accumulate a batch shouldn't be too long

We're getting reduced overhead and increased throughput, but
suffering from a longer worst case response time

25

B N ek

R e T

e

1Z€

- Random

ldea #3

: : N
Multicastin a Q/
directed

hetwork graph

AN
Linear network coding Q/
achieves the maximum V|] | %2
throughput in any directed O
network graph! eyt [

But how do we compute
the coefficients to
achieve optimality?

Random network

coding: generate E
coefficients randomly O

Randomized load balancing

Fhpes

Lottery CPU Scheduling

Randomized algorithms may avoid
maintaining states and improve
performance

QuickSort: O(n log n) time if we select
pivot elements uniformly at random

The Monte Carlo method uses

randomness for deterministic problems
that are difficult to solve

o s s i AN G S R LA S RO AR
w1t R T e SN AN Y e A R panz v AN
- IR T Lw] 1V 3 ot
S RS PN OGNS
o i Lo S A AL S LTSRN A NERT N
p T AV "

ARSI A A

PRI RTN WA A5 s
.

The advent of Monte Carlo Tree |

Search in 2006 dramatically
iImproves the ability for
computers to play Go

g
e

PRI TRY

i, Y AP REBORIKINIT HIES
a

RAR LSRR R

SRS s 1 PRI A O 1

e T P

ey

— P

14 SR E RSN TR IR IS S S N N 0 O OGRS SRR, = R RPN R RS RN TII AR TS R A
2 Wy LEEVR o R e s Ny

Many other real-world examples

Resolving contention in broadcast medium by
backing off randomly

Randomized routing

37

So, randomize and avoid maintaining
states as much as possible

But what if | have to remember and
maintain some states?

Use soft states, which expire after some
time without a refresh

ldea #4: Use layers, but no more than 3

The (In)famous ISO/OSI Model

055 01 Lager
“Transport Layer
Networle (/ag@’

- Dot Linke Layer
it s

42

What you really need IS...

Cl/] 7 g’nﬂ() p]ZS of COMpquef §>/§42M Desnam ny nhoduch

| alzer, M. hans Kaashoek, MiT

a¥>3'%

43

How do you draw a line between functions?

Tre Funckion in queskon can Competely and Cotachly
e implemented only with e inowledge and help of

e applidd""wn P %V\dn‘wg M He end ‘703/43

QOWL'MS an [mCoMPl&Pﬂ version of Hee gum&l—fon
Qrov‘nded oy e lower™ (ﬁg(QFS may be useful as a—

@rﬁof mance. ¢nhancement,
gnd' lo-End P;Y‘@ Uments m §\/SJ£M (ks fﬁv\ , chf

/ E
y ” & ¥ 4 4]
. } -
/ - I, : F i }
! L ‘; 4 § . \“" { § . A * 4
. L

45

The end-to-end argument: example

The end-to-end argument can be made elsewhere

Error control: best done in the applications

Encryption (Branstad, 1973): Diffie and Hellman; Needham
and Schroeder

Two-phase commit protocols: do not depend on reliability,
FIFO sequencing, or duplicate suppression for their correctness

RISC architectures: no need to anticipate application
requirements for an esoteric feature

47

Layers in a computer system: 3 or 4?

l.\ *('\ S

S Dt 3 PP A NP vy
e — el ;
_— i L S R ——
P

Middleware.?

v B T e e oL B
PR Py~ v g o o
.o o

e i ST S e

- Upahing Sys

e

B e T L »

vt

T e T T g

TN e AL B

-
L ISR

ardiare._

L e T v, .

48

The rise and fall of middleware research

1000

- ~ 750

- - _ 500

¥ ! - 250
9y)) 1IN R P .

1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019

Source: Google Scholar search, “middleware” in titles only

Layers in a computer system

_#*

QP{?IfCﬂJ’:oﬂS ,; %W WOHES }

O gt g g);vl;wﬂ

Hﬂ didre.

Corollary to idea #4: Use software,
unless performance is not good enough

Case Iin point: machine learning

ML “Traming Wordoas ML TYammfj Nsrlcload NL Tmmmg WOMOI’A

Implement more functions in hardware, but
only when they definitely help improve the
performance of the applications we run.

Idea #5: Use hierarchies to be more

scalable, but no more than 3

Network Time Protocol (NTP)

Other examples using hierarchies

Domain name system (DNS): root servers —
organization servers — authoritative name servers

Certificate authorities (CA): root certificates —
iIntermediate certificates — certificates

Web service: original servers — edge servers in CDNs —
clients

57

Why do we use only 3 levels in the
hierarchical design?

Well, 3 is scalable enough based on real-
world experiences — the complexity
from more levels is not hecessary.

Hierarchical designs are conceptually
easy, but difficult to implement correctly

ldeas towards implementing hierarchies

Cache aggressively in leaf nodes to avoid congesting the
root

Nodes in each hierarchy should depend only on their
parents for proper execution

Leaf-to-leaf communication is expensive to support

peer-to-peer vs. client-server?

61

Peer-to-Peer vs. Client-Server?

V@Ymisé{onlass Blockchan Cloud Cow W*""j
Pe@f=to<Pegr vs. ClieritServer?

Hmissionless Blockehain 7,)
oud Compuing

Pedf=to<Pe®r vs. CliechitSerer®
Slow |

Fas+

/Wadnl—mnal RDU‘M S %Wﬂre-'mﬁw Nél'wm'{cn'yj
Pectto-Paer vs. Cliept=Server?

/{?ddnl—mnal RDU‘M S %Qware-'wmed N@HAJOI'(Q}:KI
Peero=-Paer vs. Cliept=Setver?

Corollary to idea #5: Use the cloud as
much as possible, only use peer-to-
peer when necessary

#1: Multiplexing and virtualization: use statistical knowledge
of the users

#2: Batching: trading response time for throughput

#3: Randomize and avoid maintaining states as much as
possible

#4: Use layers, but no more than 3
#5: Use hierarchies to be more scalable, but no more than 3

#6: Use pipelines

63

ldea #6: Use pipelines

Traditional parallelism with more

processors requires breaking up a task
iInto multiple independent subtasks

Example: downloading images into a
web browser

But what if the subtasks are dependent
— one cannot start until another ends?

Pipelining parallelism increases throughput

4 1 Rssumplhon: 0 Subtask
| depends only on the
Z 9 { ’Przv:ous one in e chan
> 2 21 |1
|
4 4 (e 2 1
\ °> 5] 4 |8 |2

Instruction pipelining with a 4-stage pipeline

%@‘F@ % \N@@? /\BQL(L("L)D{ D\
OO0 C
° _Shage 1 - Ferch
1 1
| - Shage - Zcode
2 2 { .
é,[ﬂae 2, - pYecute
e 3 2 _1_/
\ g
4 4 |2 21 (4| Write-lack
> |5 |4 |8 |2

A plpellned adderina cloud or edge TPU
A B Out

/5

Pipeline parallelism for DNN training

Worker 1 Worker 2 Worker 3 Worker 4

Background Communication
(Activations & Gradients)

) N
g Worker 1 [Y %\ 2 |2 3(3
: Worker 2 \ 2 3 4 \ h 3 (3 4
_ Worker 3 \\1 2 3 4 n 3 4|4
Output stage
1 4 |4 515
Worker 4 &&& 2
| \ Y Y
! Startup State Steady State
i . Time
| i I Forward Pass Backward Pass N\ Idle
i Time :
| Forward Work i Backward Work |

Narayanan, et al., "PipeDream: Generalized Pipeline Parallelism for DNN Training,” ACM SOSP 2019.

Fundamentally, system design is about

trade-offs

Trade-offs between more abundant
resources and scarce resources at the
bottleneck

Trade-offs in system design

Multiplexing and virtualization: more time, more
space consumed, but costs less

Parallelism: more computation, less time to complete

Batching: trading response times for system
throughput

79

Reading: Keshav 6.1 — 6.5

