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Designing a real system is a creative 
process, and like anything else creative, there 
are some ideas that help getting good designs



Recall: Designing the network as a system

Every complex computer system involves one or more 
communication links, usually organized to form a network 

Identified challenging properties of a network 

The layering principle: the three-layer reference design 

The end-to-end argument (which we just covered): 
applications know the best!
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But there are more of these principles 
(techniques) in design



Reading: Keshav 6.1 — 6.5



What is system design?
A computer network provides computation, storage and transmission 
resources  

System design is the art and science of putting together these 
resources into a harmonious whole 

Ultimately, you wish to extract the most from what you have
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Where do we start from?



Simplicity?



Simplicity?  It can be an overarching 
philosophy, but it is too high level.



Performance metrics and resource constraints
In any system, some resources are more freely available than others 

Think about a high-end laptop connected to Internet by a DSL modem 

The constrained resource is link bandwidth 

CPU and memory are unconstrained 

We wish to maximize a set of performance metrics given a set of resource 
constraints 

Explicitly identifying constraints and metrics helps in designing efficient systems 

Maximize reliability (mean time between failures) for a car that costs less than 
$10,000 to manufacture

10



Real-world system design should be
Scalable, modular, extensible, and elegant 

Future-proof 

Rapid technological change 

Market conditions may dictate changes to design 
halfway through the process 

International standards, which themselves change 
slowly, also impose constraints
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Most resources are a combination of 
time, space, computation, money, labor, 
and scaling



Let’s think about a few of these in turn



Time
Shows up in many constraints 

deadline for task completion, time to market, mean time between failures 

Metrics 

response time: mean time to complete a task 

throughput: number of tasks completed per unit time 

degree of parallelism  = response time  throughput 

20 tasks completed in 10 seconds, and each task takes 3 seconds 

 degree of parallelism = 3  20 / 10 = 6

×

→ ×
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Space
Example: a limit on the memory available for a buffer to hold packets 
in switches and routers 

We can also view bandwidth as a space constraint 

A T3 link has a bandwidth of 44.768 Mbps.  If we use it to carry 
video streams with a mean bit rate of 1.5 Mbps, we can fit at most 
29 streams in this link.
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Scaling
A design constraint, rather than a resource constraint 

Minimizes the use of centralized elements in the design 

Yet, forces the use of complicated distributed algorithms 

Hard to measure 

but necessary for success
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Think about resource bottlenecks
Bottlenecks are the most constrained elements in a system 

System performance improves by removing the bottlenecks 

But inevitably creates new bottlenecks 

In a balanced system, all resources are simultaneously bottlenecked 

This is optimal, but nearly impossible to achieve 

In practice, bottlenecks move from one part of the system to another 

Historical example: Ford Model T
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Time for design ideas!



Idea #1: Multiplexing and virtualization



Multiplexing

Another word for sharing 

Trades time and space for money 

Users see an increased response time, and take up space 
when waiting, but the system costs less 

economies of scale make a single large resource cheaper
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Multiplexing
Examples 

Multiplexed communication links 

Servers in cloud computing 

Another way to look at a shared resource 

Unshared virtual resource — the telephone network with time-division multiplexing 

Server controls access to the shared resource 

uses a schedule to resolve contention 

choice of scheduling: critical in proving quality of service guarantees — think about 
boarding a flight
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Statistical multiplexing
Suppose resource has capacity C 

Shared by N identical tasks 

Each task requires capacity c 

If N  c  C, then the resource is underloaded 

If at most 10% of tasks active, then C  N  c / 10 is enough 

We used statistical knowledge of users to reduce system cost 

This is the statistical multiplexing gain

⋅ ≤

≥ ⋅
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Two types of statistical multiplexing
Spatial 

we expect only a fraction of tasks to be simultaneously active 

Temporal 

we expect a task to be active only part of the time — its average 
resource consumption is less than its peak 

e.g. silence periods during a voice call; video streams with variable 
bit rates
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Idea #2: Batching



Batching: trading response time for throughput

Group tasks together to amortize overhead 

Only works when overhead for N tasks < N time overhead for one 
task 

Also, time taken to accumulate a batch shouldn’t be too long 

We’re getting reduced overhead and increased throughput, but 
suffering from a longer worst case response time
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Idea #3: Randomize!



Multicast in a 
directed 
network graph



Linear network coding 
achieves the maximum 
throughput in any directed 
network graph!



But how do we compute 
the coefficients to 
achieve optimality?



Random network 
coding: generate 
coefficients randomly



Randomized load balancing



Lottery CPU Scheduling



Randomized algorithms may avoid 
maintaining states and improve 
performance



QuickSort: O(n log n) time if we select 
pivot elements uniformly at random



The Monte Carlo method uses 
randomness for deterministic problems 
that are difficult to solve



The advent of Monte Carlo Tree 
Search in 2006 dramatically 
improves the ability for 
computers to play Go



Many other real-world examples

Resolving contention in broadcast medium by 
backing off randomly 

Randomized routing
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So, randomize and avoid maintaining 
states as much as possible



But what if I have to remember and 
maintain some states?



Use soft states, which expire after some 
time without a refresh



Idea #4: Use layers, but no more than 3



The (In)famous ISO/OSI Model
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What you really need is…
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But why?



How do you draw a line between functions?
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The end-to-end argument: example
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The end-to-end argument can be made elsewhere

Error control: best done in the applications 

Encryption (Branstad, 1973): Diffie and Hellman; Needham 
and Schroeder 

Two-phase commit protocols: do not depend on reliability, 
FIFO sequencing, or duplicate suppression for their correctness 

RISC architectures: no need to anticipate application 
requirements for an esoteric feature
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Layers in a computer system: 3 or 4?
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The rise and fall of middleware research
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Source: Google Scholar search, “middleware” in titles only



Layers in a computer system
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Corollary to idea #4: Use software, 
unless performance is not good enough



Case in point: machine learning
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Implement more functions in hardware, but 
only when they definitely help improve the 
performance of the applications we run.



Idea #5: Use hierarchies to be more 
scalable, but no more than 3



Network Time Protocol (NTP)
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Other examples using hierarchies

Domain name system (DNS): root servers — 
organization servers — authoritative name servers  

Certificate authorities (CA): root certificates — 
intermediate certificates — certificates 

Web service: original servers — edge servers in CDNs — 
clients
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Why do we use only 3 levels in the 
hierarchical design?



Well, 3 is scalable enough based on real-
world experiences — the complexity 
from more levels is not necessary.



Hierarchical designs are conceptually 
easy, but difficult to implement correctly



Ideas towards implementing hierarchies

Cache aggressively in leaf nodes to avoid congesting the 
root 

Nodes in each hierarchy should depend only on their 
parents for proper execution 

Leaf-to-leaf communication is expensive to support 

peer-to-peer vs. client-server?
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Peer-to-Peer vs. Client-Server?











Corollary to idea #5: Use the cloud as 
much as possible, only use peer-to-
peer when necessary



#1: Multiplexing and virtualization: use statistical knowledge 
of the users 

#2: Batching: trading response time for throughput 

#3: Randomize and avoid maintaining states as much as 
possible 

#4: Use layers, but no more than 3 

#5: Use hierarchies to be more scalable, but no more than 3 

#6: Use pipelines
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Idea #6: Use pipelines



Traditional parallelism with more 
processors requires breaking up a task 
into multiple independent subtasks



Example: downloading images into a 
web browser



But what if the subtasks are dependent 
— one cannot start until another ends?



Pipelining parallelism increases throughput
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Instruction pipelining with a 4-stage pipeline
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A pipelined adder in a cloud or edge TPU
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Pipeline parallelism for DNN training
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Narayanan, et al., “PipeDream: Generalized Pipeline Parallelism for DNN Training,” ACM SOSP 2019.
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Figure 4: An example PipeDream pipeline with 4 workers,
showing startup and steady states. In this example, the back-
ward pass takes twice as long as the forward pass.

choosing to not replicate fully connected layers that have a large
number of weight parameters and small outputs. OWT does not
use pipelining. FlexFlow [33] proposed splitting a single iteration
along samples, operators, attributes, and parameters, and describes
an algorithm to determine how to perform this splitting in an auto-
mated way. However, FlexFlow does not perform pipelining, and
we show in our experiments (§ 5.3) that this leaves as much as 90%
of performance on the table.

2.2 Inter-batch Parallelism
Chen et al. [15] brie�y explored the potential bene�ts of pipelin-
ing minibatches in model-parallel training, but do not address the
conditions for good statistical e�ciency, scale, and generality as
applicable to large real-world models. Huo et al. [29] explored par-
allelizing the backward pass during training. Our proposed solution
parallelizes both the forward and backward pass.

GPipe (concurrent work with an earlier PipeDream preprint [25])
uses pipelining in the context of model-parallel training for very
large models [28]. GPipe does not specify an algorithm for parti-
tioning a model, but assumes a partitioned model as input. GPipe
further splits a minibatch intom microbatches, and performs for-
ward passes followed by backward passes for thesem microbatches
(see Figure 3,m = 4). With a focus on training a large model like
AmoebaNet, GPipe optimizes for memory e�ciency; it uses existing
techniques such as weight gradient aggregation and trades com-
putation for memory by discarding activation stashes between the
forward and the backward pass, instead opting to re-compute them
when needed in the backward pass [14]. As a result, it can su�er
from reduced hardware e�ciency due to re-computation overheads
and frequent pipeline �ushes ifm is small (§ 5.4).

In comparison, PipeDream addresses key issues ignored in prior
work, o�ering a general solution that keeps workers well utilized,
combining pipelining with intra-batch parallelism in a principled
way, while also automating the partitioning of the model across
the available workers.

2.3 DNN Model and Hardware Diversity
DNN models are diverse, with convolutional layers, LSTMs [55],
attention layers [53], and fully-connected layers commonly used.
These di�erent types of models exhibit vastly di�erent performance
characteristics with di�erent parallelization strategies, making the
optimal parallelization strategy highly model-dependent.
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Figure 5: An example pipeline-parallel assignment with
four GPUs and an example timeline at one of the GPUs
(worker 3), highlighting the temporal overlap of computa-
tion and activation / gradient communication.

Picking an optimal parallelization scheme is challenging because
the e�cacy of such a scheme depends on the characteristics of
the target deployment hardware as well; GPUs, ASICs, and FPGAs
have very di�erent compute capabilities. Moreover, interconnects
linking these accelerators have di�erent topologies and capacities;
cloud servers are linked by tens to 100Gbps networks, accelera-
tors within servers might be connected over shared PCIe trees (10
to 15GBps), and specialized expensive servers, such as the DGX-
1 [23], use NVLink with point-to-point 30GBps bandwidth capabili-
ties. This diversity in models and deployments makes it extremely
hard to manually come up with an optimal parallelization strategy.
PipeDream automates this process, as we discuss in § 3.1.

3 PIPELINE PARALLELISM
PipeDream uses pipeline parallelism (PP), a new parallelization
strategy that combines intra-batch parallelism with inter-batch
parallelism. Pipeline-parallel computation involves partitioning
the layers of a DNN model into multiple stages, where each stage
consists of a consecutive set of layers in the model. Each stage is
mapped to a separate GPU that performs the forward pass (and
backward pass) for all layers in that stage.3

In the simplest case, only one minibatch is active in the system,
as in traditional model-parallel training (Figure 2); in this setup, at
most one GPU is active at a time. Ideally, we would like all GPUs to
be active. With this in mind, we inject multiple minibatches into the
pipeline one after the other. On completing its forward pass for a
minibatch, each stage asynchronously sends the output activations
3We use GPUs as a concrete instance of accelerators and use the terms “GPU” and
“worker” interchangeably.
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Fundamentally, system design is about 
trade-offs



Trade-offs between more abundant 
resources and scarce resources at the 
bottleneck



Trade-offs in system design

Multiplexing and virtualization: more time, more 
space consumed, but costs less 

Parallelism: more computation, less time to complete 

Batching: trading response times for system 
throughput
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Reading: Keshav 6.1 — 6.5


