
Episode 3. Principles in Network Design

Part 2

Baochun Li

Department of Electrical and Computer Engineering

University of Toronto

Designing a real system is a creative
process, and like anything else creative, there
are some ideas that help getting good designs

Recall: Designing the network as a system

Every complex computer system involves one or more
communication links, usually organized to form a network

Identified challenging properties of a network

The layering principle: the three-layer reference design

The end-to-end argument (which we just covered):
applications know the best!

3

But there are more of these principles
(techniques) in design

Reading: Keshav 6.1 — 6.5

What is system design?
A computer network provides computation, storage and transmission
resources

System design is the art and science of putting together these
resources into a harmonious whole

Ultimately, you wish to extract the most from what you have

6

Where do we start from?

Simplicity?

Simplicity? It can be an overarching
philosophy, but it is too high level.

Performance metrics and resource constraints
In any system, some resources are more freely available than others

Think about a high-end laptop connected to Internet by a DSL modem

The constrained resource is link bandwidth

CPU and memory are unconstrained

We wish to maximize a set of performance metrics given a set of resource
constraints

Explicitly identifying constraints and metrics helps in designing efficient systems

Maximize reliability (mean time between failures) for a car that costs less than
$10,000 to manufacture

10

Real-world system design should be
Scalable, modular, extensible, and elegant

Future-proof

Rapid technological change

Market conditions may dictate changes to design
halfway through the process

International standards, which themselves change
slowly, also impose constraints

11

Most resources are a combination of
time, space, computation, money, labor,
and scaling

Let’s think about a few of these in turn

Time
Shows up in many constraints

deadline for task completion, time to market, mean time between failures

Metrics

response time: mean time to complete a task

throughput: number of tasks completed per unit time

degree of parallelism = response time throughput

20 tasks completed in 10 seconds, and each task takes 3 seconds

 degree of parallelism = 3 20 / 10 = 6

×

→ ×

14

Space
Example: a limit on the memory available for a buffer to hold packets
in switches and routers

We can also view bandwidth as a space constraint

A T3 link has a bandwidth of 44.768 Mbps. If we use it to carry
video streams with a mean bit rate of 1.5 Mbps, we can fit at most
29 streams in this link.

15

Scaling
A design constraint, rather than a resource constraint

Minimizes the use of centralized elements in the design

Yet, forces the use of complicated distributed algorithms

Hard to measure

but necessary for success

16

Think about resource bottlenecks
Bottlenecks are the most constrained elements in a system

System performance improves by removing the bottlenecks

But inevitably creates new bottlenecks

In a balanced system, all resources are simultaneously bottlenecked

This is optimal, but nearly impossible to achieve

In practice, bottlenecks move from one part of the system to another

Historical example: Ford Model T
17

Time for design ideas!

Idea #1: Multiplexing and virtualization

Multiplexing

Another word for sharing

Trades time and space for money

Users see an increased response time, and take up space
when waiting, but the system costs less

economies of scale make a single large resource cheaper

20

Multiplexing
Examples

Multiplexed communication links

Servers in cloud computing

Another way to look at a shared resource

Unshared virtual resource — the telephone network with time-division multiplexing

Server controls access to the shared resource

uses a schedule to resolve contention

choice of scheduling: critical in proving quality of service guarantees — think about
boarding a flight

21

Statistical multiplexing
Suppose resource has capacity C

Shared by N identical tasks

Each task requires capacity c

If N c C, then the resource is underloaded

If at most 10% of tasks active, then C N c / 10 is enough

We used statistical knowledge of users to reduce system cost

This is the statistical multiplexing gain

⋅ ≤

≥ ⋅

22

Two types of statistical multiplexing
Spatial

we expect only a fraction of tasks to be simultaneously active

Temporal

we expect a task to be active only part of the time — its average
resource consumption is less than its peak

e.g. silence periods during a voice call; video streams with variable
bit rates

23

Idea #2: Batching

Batching: trading response time for throughput

Group tasks together to amortize overhead

Only works when overhead for N tasks < N time overhead for one
task

Also, time taken to accumulate a batch shouldn’t be too long

We’re getting reduced overhead and increased throughput, but
suffering from a longer worst case response time

25

Idea #3: Randomize!

Multicast in a
directed
network graph

Linear network coding
achieves the maximum
throughput in any directed
network graph!

But how do we compute
the coefficients to
achieve optimality?

Random network
coding: generate
coefficients randomly

Randomized load balancing

Lottery CPU Scheduling

Randomized algorithms may avoid
maintaining states and improve
performance

QuickSort: O(n log n) time if we select
pivot elements uniformly at random

The Monte Carlo method uses
randomness for deterministic problems
that are difficult to solve

The advent of Monte Carlo Tree
Search in 2006 dramatically
improves the ability for
computers to play Go

Many other real-world examples

Resolving contention in broadcast medium by
backing off randomly

Randomized routing

37

So, randomize and avoid maintaining
states as much as possible

But what if I have to remember and
maintain some states?

Use soft states, which expire after some
time without a refresh

Idea #4: Use layers, but no more than 3

The (In)famous ISO/OSI Model

42

What you really need is…

43

But why?

How do you draw a line between functions?

45

The end-to-end argument: example

46

The end-to-end argument can be made elsewhere

Error control: best done in the applications

Encryption (Branstad, 1973): Diffie and Hellman; Needham
and Schroeder

Two-phase commit protocols: do not depend on reliability,
FIFO sequencing, or duplicate suppression for their correctness

RISC architectures: no need to anticipate application
requirements for an esoteric feature

47

Layers in a computer system: 3 or 4?

48

The rise and fall of middleware research

49

Source: Google Scholar search, “middleware” in titles only

Layers in a computer system

50

Corollary to idea #4: Use software,
unless performance is not good enough

Case in point: machine learning

53

Implement more functions in hardware, but
only when they definitely help improve the
performance of the applications we run.

Idea #5: Use hierarchies to be more
scalable, but no more than 3

Network Time Protocol (NTP)

56

Other examples using hierarchies

Domain name system (DNS): root servers —
organization servers — authoritative name servers

Certificate authorities (CA): root certificates —
intermediate certificates — certificates

Web service: original servers — edge servers in CDNs —
clients

57

Why do we use only 3 levels in the
hierarchical design?

Well, 3 is scalable enough based on real-
world experiences — the complexity
from more levels is not necessary.

Hierarchical designs are conceptually
easy, but difficult to implement correctly

Ideas towards implementing hierarchies

Cache aggressively in leaf nodes to avoid congesting the
root

Nodes in each hierarchy should depend only on their
parents for proper execution

Leaf-to-leaf communication is expensive to support

peer-to-peer vs. client-server?

61

Peer-to-Peer vs. Client-Server?

Corollary to idea #5: Use the cloud as
much as possible, only use peer-to-
peer when necessary

#1: Multiplexing and virtualization: use statistical knowledge
of the users

#2: Batching: trading response time for throughput

#3: Randomize and avoid maintaining states as much as
possible

#4: Use layers, but no more than 3

#5: Use hierarchies to be more scalable, but no more than 3

#6: Use pipelines
68

Idea #6: Use pipelines

Traditional parallelism with more
processors requires breaking up a task
into multiple independent subtasks

Example: downloading images into a
web browser

But what if the subtasks are dependent
— one cannot start until another ends?

Pipelining parallelism increases throughput

73

Instruction pipelining with a 4-stage pipeline

74

A pipelined adder in a cloud or edge TPU

75

Pipeline parallelism for DNN training

76

Narayanan, et al., “PipeDream: Generalized Pipeline Parallelism for DNN Training,” ACM SOSP 2019.

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

Time
Backward PassForward Pass Idle

Startup State Steady State

Worker 1

Worker 2

Worker 3

1

1

1 4 2

1

Worker 4 1 1 3 4

2

2

2

1

3

3

3

2

4

4

1

32

1

1

2

2

11 5

2

3

3

2

3

4 5

5

22 6

3

4

4

3

5

6

6

6

4

4 4

4

5 5

5 5

3 3

6

7

7

Figure 4: An example PipeDream pipeline with 4 workers,
showing startup and steady states. In this example, the back-
ward pass takes twice as long as the forward pass.

choosing to not replicate fully connected layers that have a large
number of weight parameters and small outputs. OWT does not
use pipelining. FlexFlow [33] proposed splitting a single iteration
along samples, operators, attributes, and parameters, and describes
an algorithm to determine how to perform this splitting in an auto-
mated way. However, FlexFlow does not perform pipelining, and
we show in our experiments (§ 5.3) that this leaves as much as 90%
of performance on the table.

2.2 Inter-batch Parallelism
Chen et al. [15] brie�y explored the potential bene�ts of pipelin-
ing minibatches in model-parallel training, but do not address the
conditions for good statistical e�ciency, scale, and generality as
applicable to large real-world models. Huo et al. [29] explored par-
allelizing the backward pass during training. Our proposed solution
parallelizes both the forward and backward pass.

GPipe (concurrent work with an earlier PipeDream preprint [25])
uses pipelining in the context of model-parallel training for very
large models [28]. GPipe does not specify an algorithm for parti-
tioning a model, but assumes a partitioned model as input. GPipe
further splits a minibatch intom microbatches, and performs for-
ward passes followed by backward passes for thesem microbatches
(see Figure 3,m = 4). With a focus on training a large model like
AmoebaNet, GPipe optimizes for memory e�ciency; it uses existing
techniques such as weight gradient aggregation and trades com-
putation for memory by discarding activation stashes between the
forward and the backward pass, instead opting to re-compute them
when needed in the backward pass [14]. As a result, it can su�er
from reduced hardware e�ciency due to re-computation overheads
and frequent pipeline �ushes ifm is small (§ 5.4).

In comparison, PipeDream addresses key issues ignored in prior
work, o�ering a general solution that keeps workers well utilized,
combining pipelining with intra-batch parallelism in a principled
way, while also automating the partitioning of the model across
the available workers.

2.3 DNN Model and Hardware Diversity
DNN models are diverse, with convolutional layers, LSTMs [55],
attention layers [53], and fully-connected layers commonly used.
These di�erent types of models exhibit vastly di�erent performance
characteristics with di�erent parallelization strategies, making the
optimal parallelization strategy highly model-dependent.

Time

Cn+1
Cn+1 Bn-x

Cn-x-1 Cn Cn-x Cn+1

Fn+1 Bn-x+1Fn

Backward WorkForward Work

Background Communication
(Activations & Gradients)

Worker 1 Worker 2 Worker 3 Worker 4

Output stage
Input
stage

Figure 5: An example pipeline-parallel assignment with
four GPUs and an example timeline at one of the GPUs
(worker 3), highlighting the temporal overlap of computa-
tion and activation / gradient communication.

Picking an optimal parallelization scheme is challenging because
the e�cacy of such a scheme depends on the characteristics of
the target deployment hardware as well; GPUs, ASICs, and FPGAs
have very di�erent compute capabilities. Moreover, interconnects
linking these accelerators have di�erent topologies and capacities;
cloud servers are linked by tens to 100Gbps networks, accelera-
tors within servers might be connected over shared PCIe trees (10
to 15GBps), and specialized expensive servers, such as the DGX-
1 [23], use NVLink with point-to-point 30GBps bandwidth capabili-
ties. This diversity in models and deployments makes it extremely
hard to manually come up with an optimal parallelization strategy.
PipeDream automates this process, as we discuss in § 3.1.

3 PIPELINE PARALLELISM
PipeDream uses pipeline parallelism (PP), a new parallelization
strategy that combines intra-batch parallelism with inter-batch
parallelism. Pipeline-parallel computation involves partitioning
the layers of a DNN model into multiple stages, where each stage
consists of a consecutive set of layers in the model. Each stage is
mapped to a separate GPU that performs the forward pass (and
backward pass) for all layers in that stage.3

In the simplest case, only one minibatch is active in the system,
as in traditional model-parallel training (Figure 2); in this setup, at
most one GPU is active at a time. Ideally, we would like all GPUs to
be active. With this in mind, we inject multiple minibatches into the
pipeline one after the other. On completing its forward pass for a
minibatch, each stage asynchronously sends the output activations
3We use GPUs as a concrete instance of accelerators and use the terms “GPU” and
“worker” interchangeably.

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

Time
Backward PassForward Pass Idle

Startup State Steady State

Worker 1

Worker 2

Worker 3

1

1

1 4 2

1

Worker 4 1 1 3 4

2

2

2

1

3

3

3

2

4

4

1

32

1

1

2

2

11 5

2

3

3

2

3

4 5

5

22 6

3

4

4

3

5

6

6

6

4

4 4

4

5 5

5 5

3 3

6

7

7

Figure 4: An example PipeDream pipeline with 4 workers,
showing startup and steady states. In this example, the back-
ward pass takes twice as long as the forward pass.

choosing to not replicate fully connected layers that have a large
number of weight parameters and small outputs. OWT does not
use pipelining. FlexFlow [33] proposed splitting a single iteration
along samples, operators, attributes, and parameters, and describes
an algorithm to determine how to perform this splitting in an auto-
mated way. However, FlexFlow does not perform pipelining, and
we show in our experiments (§ 5.3) that this leaves as much as 90%
of performance on the table.

2.2 Inter-batch Parallelism
Chen et al. [15] brie�y explored the potential bene�ts of pipelin-
ing minibatches in model-parallel training, but do not address the
conditions for good statistical e�ciency, scale, and generality as
applicable to large real-world models. Huo et al. [29] explored par-
allelizing the backward pass during training. Our proposed solution
parallelizes both the forward and backward pass.

GPipe (concurrent work with an earlier PipeDream preprint [25])
uses pipelining in the context of model-parallel training for very
large models [28]. GPipe does not specify an algorithm for parti-
tioning a model, but assumes a partitioned model as input. GPipe
further splits a minibatch intom microbatches, and performs for-
ward passes followed by backward passes for thesem microbatches
(see Figure 3,m = 4). With a focus on training a large model like
AmoebaNet, GPipe optimizes for memory e�ciency; it uses existing
techniques such as weight gradient aggregation and trades com-
putation for memory by discarding activation stashes between the
forward and the backward pass, instead opting to re-compute them
when needed in the backward pass [14]. As a result, it can su�er
from reduced hardware e�ciency due to re-computation overheads
and frequent pipeline �ushes ifm is small (§ 5.4).

In comparison, PipeDream addresses key issues ignored in prior
work, o�ering a general solution that keeps workers well utilized,
combining pipelining with intra-batch parallelism in a principled
way, while also automating the partitioning of the model across
the available workers.

2.3 DNN Model and Hardware Diversity
DNN models are diverse, with convolutional layers, LSTMs [55],
attention layers [53], and fully-connected layers commonly used.
These di�erent types of models exhibit vastly di�erent performance
characteristics with di�erent parallelization strategies, making the
optimal parallelization strategy highly model-dependent.

Time

Cn+1
Cn+1 Bn-x

Cn-x-1 Cn Cn-x Cn+1

Fn+1 Bn-x+1Fn

Backward WorkForward Work

Background Communication
(Activations & Gradients)

Worker 1 Worker 2 Worker 3 Worker 4

Output stage
Input
stage

Figure 5: An example pipeline-parallel assignment with
four GPUs and an example timeline at one of the GPUs
(worker 3), highlighting the temporal overlap of computa-
tion and activation / gradient communication.

Picking an optimal parallelization scheme is challenging because
the e�cacy of such a scheme depends on the characteristics of
the target deployment hardware as well; GPUs, ASICs, and FPGAs
have very di�erent compute capabilities. Moreover, interconnects
linking these accelerators have di�erent topologies and capacities;
cloud servers are linked by tens to 100Gbps networks, accelera-
tors within servers might be connected over shared PCIe trees (10
to 15GBps), and specialized expensive servers, such as the DGX-
1 [23], use NVLink with point-to-point 30GBps bandwidth capabili-
ties. This diversity in models and deployments makes it extremely
hard to manually come up with an optimal parallelization strategy.
PipeDream automates this process, as we discuss in § 3.1.

3 PIPELINE PARALLELISM
PipeDream uses pipeline parallelism (PP), a new parallelization
strategy that combines intra-batch parallelism with inter-batch
parallelism. Pipeline-parallel computation involves partitioning
the layers of a DNN model into multiple stages, where each stage
consists of a consecutive set of layers in the model. Each stage is
mapped to a separate GPU that performs the forward pass (and
backward pass) for all layers in that stage.3

In the simplest case, only one minibatch is active in the system,
as in traditional model-parallel training (Figure 2); in this setup, at
most one GPU is active at a time. Ideally, we would like all GPUs to
be active. With this in mind, we inject multiple minibatches into the
pipeline one after the other. On completing its forward pass for a
minibatch, each stage asynchronously sends the output activations
3We use GPUs as a concrete instance of accelerators and use the terms “GPU” and
“worker” interchangeably.

Fundamentally, system design is about
trade-offs

Trade-offs between more abundant
resources and scarce resources at the
bottleneck

Trade-offs in system design

Multiplexing and virtualization: more time, more
space consumed, but costs less

Parallelism: more computation, less time to complete

Batching: trading response times for system
throughput

79

Reading: Keshav 6.1 — 6.5

